Manufacturers of electronic devices, from home audio equipment to automotive keyless entry systems, are increasingly seeking a reliable, cost effective method for uniquely identifying and tracking products through the manufacturing cycle, sales distribution and after-sale warranty verification. An autonomous, automated tracking system requires that a permanent, machine-readable code be applied to an internal printed circuit board to uniquely identify each product. The code must be durable enough to survive manufacturing processes including wave solder and board cleaning, must not affect circuit performance, and must store information in the small space available on real-estate conscious printed circuit boards.
The 2D matrix code provides a means to store alphanumeric character strings in very small areas of the printed circuit board. Laser marking technology provides a method for permanently applying 2D matrix codes to most board substrates. The high-resolution and high-accuracy of beam-steered laser marking systems provides the means to create well defined, high reliability codes regardless of code size. Laser marking also provides the user with a computer-controlled marking process for easy implementation into automated product tracking systems.
ECC 200 2D Matrix Codes
Two-dimensional symbologies encode information in the form of a https://not2latetrip.com/discovering-printed-circuit-boards-in-plain-english/ checkerboard pattern of on/off cells. Specific advantages of Data Matrix codes over conventional 1D barcodes include:
· Encode information digitally, as opposed to the analog encoding of data in conventional barcodes.
· Can accommodate low-contrast printing directly on parts without requiring a label
· Offer very high information density – the highest among other common 2D codes, which means that you can place a lot of information in a very small area.
· They are scaleable, which means that you can print them and read them in various levels of magnification – only limited by the resolution of the available printing and imaging techniques.
· Due to the high information density inherent to Data Matrix codes, they also offer built-in error-correction techniques which allow fully recovering the message encoded in a Data Matrix symbol even if the mark is damaged and missing as much as 20% of the symbol.
· They are read by video cameras as opposed to a scanned laser beam used for reading conventional barcodes, which means that they can be read in any orientation.
ECC 200 Data Matrix is the most popular 2-D symbology with extensive use in automotive, aerospace, electronics, semiconductor, medical devices and other manufacturing unit-level traceability applications. Data Matrix codes are typically not replacing conventional linear barcodes, but are being used where traditional barcodes were too large, did not provide sufficient storage capacity, or were unreadable.